A Finite Element Method for Interactive Physically Based Shape Modelling with Quadratic Tetrahedra

نویسندگان

  • Johannes Mezger
  • Bernhard Thomaszewski
  • Simon Pabst
  • Wolfgang Straßer
  • J. Mezger
چکیده

We present an alternative approach to standard geometric shape editing using physically-based simulation. With our technique, the user can deform complex objects in real-time. The enabling technology of this approach is a fast and accurate finite element implementation of an elasto-plastic material model, specifically designed for interactive shape manipulation. Using quadratic shape functions, we avoid the inherent drawback of volume locking exhibited by methods based on linear finite elements. The physical simulation uses a tetrahedral mesh, which is constructed from a coarser approximation of the detailed surface. Having computed a deformed state of the tetrahedral mesh, the deformation is transferred back to the high detail surface. This can be accomplished in an accurate and efficient way using the quadratic shape functions. In order to guarantee stability and real-time frame rates during the simulation, we cast the elasto-plastic problem into a linear formulation. For this purpose, we present a corotational formulation for quadratic finite elements. We demonstrate the versatility of our approach in interactive manipulation sessions and show that our animation system can be coupled with further physics-based animations like, e.g. fluids and cloth, in a bi-directional way. CR Categories: I.3.5 [Computer Graphics]: Physically based modeling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method

This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...

متن کامل

Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

We present a new method for physically animating deformable shapes using finite element models (FEM). Contrary to commonly used methods based on tetrahedra, our finite elements are the bounding voxels of a given shape at arbitrary resolution. This alleviates the complexities and limitations of tetrahedral volume meshing and results in regular, well-conditionned meshes. We show how to build the ...

متن کامل

Low-order continuous finite element spaces on hybrid non-conforming hexahedral-tetrahedral meshes

This article deals with solving partial differential equations with the finite element method on hybrid non-conforming hexahedral-tetrahedral meshes. By non-conforming, we mean that a quadrangular face of a hexahedron can be connected to two triangular faces of tetrahedra. We introduce a set of low-order continuous (C) finite element spaces defined on these meshes. They are built from standard ...

متن کامل

PREDICTION OF STATIC SOFTENING OF MICROALLOYED STEEL BY THE INTEGRATION OF FINITE ELEMENT MODEL WITH PHYSICALLY BASED STATE VARIABLE MODEL

  Abstract   Recovery and recrystallization phenomena and effects of microalloying elements on these phenomena are of great importance in designing thermomechanical processes of microalloyed steels. Thus, understanding and modeling of microstructure evolution during hot deformation leads to optimize the processing conditions and to improve the product properties.   In this study, finite element...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007